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Abstract

This dissertation addresses the critical challenge of balancing privacy and utility in smart
meter data, with a focus on the UK’s Smart Meter Implementation Program (SMIP). Smart
meters provide essential data for optimising energy efficiency, grid management, and support-
ing sustainable energy transitions, but they also pose significant privacy risks by revealing
sensitive consumer information. Currently, data aggregation, or averaging multiple profiles
into one representative profile, is the primary method for reducing identification risks for
privacy. However, the lack of a standardised, quantitative definition of "risk of identification"
in policy and literature makes it difficult to assess or replace this approach. As advanced data
analytics and AI become more integral to the energy sector, the demand for high-fidelity data
increases, along with the potential for privacy breaches. Aggregation has proven vulnerable
to certain identification attacks and often compromises data utility, especially in time series
data like smart meter readings.

In response to these challenges, this research explores AI-powered synthetic data generation
as an alternative to aggregation and introduces a novel, scientific framework for assessing
privacy. This framework, adaptable to any anonymised time series model, uses random forest
classification and Bayesian inference to evaluate identification risks based on a model output
and the input data being anonymised. By implementing a rudimentary generative AI for
smart meter data and systematically evaluating both this approach and traditional aggregation
methods in terms of utility and privacy, this study demonstrates that synthetic data can enhance
privacy protection while effectively preserving data utility. These findings have significant
implications for the future management of smart meter data and could be applied to other
sensitive time series data, as aggregation is among the most popular methods for anonymising
distributed sensitive data worldwide. Adopting synthetic data could improve privacy protec-
tions in smart grid initiatives while maintaining the necessary data utility for decision-making
and innovation. The novel framework this study develops also provides a robust tool for
evaluating and comparing privacy-preserving data release models, offering valuable insights
for future research and policy development. This work fills critical gaps in literature and sets
the stage for more secure and efficient management of smart meter data in the UK and beyond.
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1
Introduction

1.1 The Promise and Challenge of Smart Meters

The deployment of smart meters revolutionise the energy sector by enabling real-time mon-

itoring of energy consumption, enhancing grid reliability, and supporting the transition to

sustainable energy systems. The United Kingdom’s Smart Meter Implementation Program

(SMIP) represents one of the most ambitious smart grid projects globally, aiming to install

over 53 million smart meters in homes and small businesses by the end of the decade. These

devices, by providing detailed data on electricity and gas usage, hold significant promise for

optimising energy efficiency, reducing costs, and enabling consumers to make informed decisions

about their energy use. However, with this wealth of data comes a critical challenge: ensuring

the privacy of consumers while maintaining the utility of the data for various stakeholders,

including energy providers, researchers, and policymakers.

Smart meter data, despite its potential benefits, is inherently sensitive. Detailed con-

sumption patterns can reveal intimate information about individuals’ daily routines, their

1
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presence or absence from home, and even personal habits. Furthermore, even data which

is ostensibly benign to some, like energy consumption patterns, can be combined with other

information to deduce highly sensitive data. This sensitivity classifies smart meter data as

personal data under current data protection regulations in the UK, and necessitates robust

privacy-preserving mechanisms. The fundamental challenge lies in striking a balance between

maximising the utility of the data for legitimate purposes and obscuring the data such that

the privacy of individuals is protected.

Smart meter data includes detailed information on energy usage, collected every 30 minutes

for electricity and daily for gas, which is then transmitted to energy suppliers via a secure

wireless network [1]. Over half of UK households are now equipped with smart meters, repre-

senting an approximately £13.5 billion endeavor [2], marking the largest engineering project ever

undertaken in Europe [3]. This program’s primary motivation is to lay foundation for a smart

grid, a digitised electricity grid that dynamically shapes demand and tailors resource allocation

for an intermittent supply and volatile load profile [4]. The smart grid also provides invaluable

insights into how the energy system can be efficiently improved for the benefit of consumers

and the environment. However, integral to this mission is widespread access to geographically

diverse, metadata-rich, granular smart meter data [5]. Unfortunately, users of smart meter data

encounter significant legal obstacles in obtaining it due to privacy regulation, often relying on

inaccessible representations or heavily aggregated data that lose much of their real value.

1.2 Access to Smart Meter Data

The complex privacy policy and resulting difficulty in accessing relevant data serves as a major

roadblock for research into smart meter data privacy and utility. However, a significant aspect

of this dissertation’s novelty is its unfettered access to a large, metadata-rich database of smart

meter profiles provided by the Energy Demand Observatory and Laboratory (EDOL). More

detail about the data resources is available at [6]. This access enables a comprehensive analysis

that would otherwise be impossible, allowing for the development and testing of novel techniques

without the constraints typically imposed by using randomly generated or small datasets.
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This dissertation has approval to conduct tests on all contributions to the EDOL dataset,

and permission from one participant to release their personal data. Therefore, while the entire

dataset is used for research in this dissertation, all visual representations and aggregations of

data presented here are specifically derived from the contributions of the one consenting partici-

pant.

1.3 The Tension Between Privacy and Utility

The current approach to privacy in the UK’s smart meter data distribution primarily relies on

aggregation, whereby multiple profiles are averaged to create a representative dataset which is

assumed to minimise the risk of identification. However, this approach has significant limita-

tions; aggregation diminishes data utility, particularly for applications that require high-fidelity

data, such as detailed energy consumption analysis and load forecasting. Moreover, recent

studies highlight the vulnerabilities of aggregation to various attacks, including differential

attacks, where adversaries can use additional information to potentially identify individuals

within the aggregated data.

Furthermore, the concept of privacy itself, as it pertains to smart meter data, lacks a clear,

universally accepted quantitative definition. The UK’s Office of Gas and Electricity Markets

(Ofgem) mandate that data should be anonymised to the point where the risk of identification

is "remote," [7] yet this standard is not quantitatively defined, leading to inconsistencies in the

implementation and enforced minimum number of profiles aggregated per representation. Some

distributors recognise 3 as a standard, UK Power Networks enforces 5 [7], and the prominent

Smart Energy Research Lab (SERL) [8] uses 10 as the minimum aggregation size, however

these policies are arbitrary as the respective privacy trade-offs of different parameters have no

quantified nor scientific bases; this method is used because of its ubiquity across many industries

and a qualitative, intuitive assessment of it’s sufficiency. The absence of a rigorous scientific

basis for these privacy-preserving techniques exacerbates the tension between the need for data

utility and the imperative to protect consumer privacy as we have no mechanism for iterating

on or replacing current practices while definitively not reducing its protection.
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1.4 Objectives of the Dissertation

This dissertation seeks to tackle the challenges of balancing privacy and utility in smart meter

data by developing a robust scientific framework for assessing privacy in data release models.

With this framework, we evaluate the effectiveness of the existing aggregation model against an

alternative approach: generative AI-powered synthetic data. Synthetic data generation involves

creating artificial datasets that replicate the statistical properties of real data without releasing

any individual’s data directly. This method offers a promising solution to the privacy-utility

trade-off by potentially providing high utility while maintaining stringent privacy standards.

The proposed scientific and quantitative assessment framework enables a direct and unprece-

dented comparison between the incumbent aggregation model and this innovative synthetic

approach. This dissertation lays the groundwork for future research in the nascent and "not

yet properly researched" [9] field of privacy-preserving time series data release models.

1.5 Review of Literature and Methodological Approach

This study begins by reviewing the existing literature on smart meter data privacy and utility,

focusing on the legal and technical frameworks that govern data protection. The literature

review identifies significant gaps in current privacy-preserving methods and the need for a more

nuanced understanding of privacy risks. It also examines advancements in other sectors, such

as the differential privacy techniques used by the U.S. Census Bureau, and their potential

applicability to smart meter data. Building on these insights, this dissertation develops a

novel methodology for quantifying privacy in smart meter data, emphasising the concept of

"identifiability", or the likelihood that an individual’s data can be isolated within a dataset. By

integrating techniques like random forest classification and Bayesian inference, this research

proposes a quantitative framework for assessing privacy risks across different data release

models. This framework is then applied to both the traditional aggregation model and a

synthetic data generation approach, offering a comparative analysis of their effectiveness in

balancing privacy and utility.
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1.6 Significance and Implications

The findings of this research have significant implications for the future of smart meter data man-

agement in the UK. By providing a rigorous, quantitative assessment of privacy and utility, the

study offers valuable insights into how privacy-preserving data release models can be improved

and adapted to meet the needs of all stakeholders. This dissertation concludes by discussing

the potential for synthetic data to replace aggregation as the standard for smart meter data

distribution, thus contributing to the development of more secure and efficient energy systems.

This research not only fills a critical gap in literature but also provides a foundation for

policymakers and energy providers to re-evaluate current data privacy strategies. As the

adoption of smart meters continues to grow, ensuring the privacy of consumer data while

maximising its utility will remain a paramount concern. This dissertation’s contribution lies

in its quantification of privacy and its demonstration of a framework for optimising the utility-

privacy trade-off, offering a path forward for the future of smart meter data privacy in the UK.



2
Literature Review

This chapter reviews the literature relevant to assessing privacy in smart meter data release

models, which forms the foundation for this dissertation’s analysis. We begin with an overview

of the utility of smart meter data and the associated privacy risks when this data is made pub-

licly accessible. We examine the current privacy policies in place, highlighting their strengths,

limitations, and areas for improvement within the context of the UK’s regulatory framework.

We then delve into the concept of privacy as it pertains to smart meter data, considering how

existing methods for quantifying privacy can be applied to evaluate data aggregation and other

distribution models. We compare privacy practices in the UK’s Smart Meter Implementation

Program (SMIP) with those used by the United States Census Bureau, to understand why

certain strategies have not been widely adopted for smart meter data. Additionally, alternative

models to data aggregation are explored, assessing their potential to enhance privacy while

maintaining data utility. The chapter concludes by identifying gaps in the current literature

and outlining how this dissertation aims to address these issues, contributing to the ongoing

6
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development of privacy-preserving practices for the UK’s smart grid. Figure 2.1 visualises the

high-level logical structure and objectives of this review of literature.

Figure 2.1: Depiction of the primary topics being surveyed in this literature review, our synthesised
findings, and how these outputs relate to the ultimate products of this dissertation.

2.1 Smart Meter Data Privacy and Utility

The problems of increasing the utility of publicly available consumption data or increasing the

anonymity of release models are trivial in isolation, however a central theme of this dissertation

is the tension that has emerged between these mutually vital imperatives. In this section

we review the nature of smart meter data, its utility, and the consumer privacy implications

of publishing it today and in the future.

2.1.1 Balancing Privacy and Utility

Utility

At present, smart meter data is primarily consumed by three stakeholders: utilities and energy

providers, researchers and academics, and regulators and policymakers [10].

Utilities enhance grid reliability and efficiency by leveraging real-time and historical data

from consumers’ smart meters alongside public databases. This data is utilised to plan trans-
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former upgrades, analyse customer behavior for strategic planning, and identify opportunities

for storage facility placement, thereby reducing renewable energy waste [1] [11]. Researchers

typically access this data through utility partnerships, consumer studies, or public repositories,

applying it to benchmark energy systems, develop new system innovations [12], model tech-

nology adoption, and study energy equity among many other applications [13]. Policymakers

rely on anonymised data from mandatory utility reporting to plan infrastructure and develop

policies that meet future demands and integrate new technologies [14], however this data is

also aggregated before distribution [15]. In the context of this dissertation, "anonymity" refers

to preservation of user data in public representations which can be identified, not the simple

removal of associated metadata as can be the case.

Privacy Implications

While one’s smart meter consumption data may seem benign to some, it is legally personal data

and the preservation of customer privacy in the management of it is essential [10]. Whether the

risk of unauthorised public access to consumption data appears severe or not, it is imperative

that all personal data be protected to the highest standards. Even ostensibly benign data,

like energy consumption patterns, can be combined with other information to deduce sensitive

details about individuals’ daily lives [16], such as their presence or absence from home, daily

routines, and lifestyle habits [17]. This type of data access can lead to serious security risks

and privacy breaches if misused [18].

In the UK, smart meter adoption is stagnating due to an increased pubic skepticism and

waning public trust [19]. Uniform protection of all personal data is crucial to prevent exploita-

tion and to maintain consumer trust in digital system [20, 21] as trust can be undermined by the

inconsistent interpretation and application of legal mechanisms for data sharing systems [22].

The integrity of privacy frameworks hinges on consistently rigorous data protection measures,

therefore the current outdated UK smart meter data protection schemes threaten to undermine

the largest engineering project in the history of Europe.
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2.2 Privacy Legislation and Smart Meter Data

2.2.1 Legislative Definition of Privacy

Personal data like residential smart meter readings must be anonimised before being publicly

shared to maintain user privacy [10]. It is important to note that policies pertaining to

the preservation of data privacy do not provide a quantitative definition of privacy or any

risk thresholds. From reviewing the current policy as articulated by the UK Office of Gas

and Electricity Markets (Ofgem), we see that privacy is considered a spectrum, and that

privacy is conflated with a minimal risk of identification [23]. Data which is anonimised to

the point where there is no risk has no "useful purpose" [23] from a network management or

research point of view, but the ICO and Ofgem mandate that the risk of identification be

mitigated until "it is remote" [7]. In this context, the risk of identification can be thought of

as the likelihood that a malicious party could identify an individual’s load profile as having

contributed to a public data release.

2.2.2 Aggregation to Preserve Privacy

Researchers at Columbia University note that ‘identifiability’ is often mentioned in data dis-

tribution discussions but rarely quantitatively defined [24]. The SMIP reflects this, lacking

quantitative definitions or security guarantees for ‘risk of identification.’ The standard practice

in the UK, endorsed by Ofgem, is to aggregate multiple profiles into one, assuming this technique

sufficiently preserves privacy by making it ‘generally difficult’ to identify individuals, provided

small aggregations are avoided [7] as aggregation size is assumed to be a prominent driver of

identifiability [25]. All data reported at the feeder level may only be used if it feeds a minimum

of 5 individual residences, meaning its output is effectively a 5-house aggregation, and individual

meter readings, obtained with consumer consent, may only be distributed and used if they are

similarly aggregated with most applications enforcing 10-house aggregations [8]. For example,

if an academic repository, like the Smart Energy Research Lab (SERL), were to release data

from users who have installed heat pumps, they may average 10 profiles from their database

of users with heat pumps and release this single representation. In some sense, the UK defines
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its threshold for the risk of identifying public smart meter data as the result of its preferred

method to enforce it, creating a circular definition and one that is inherently rigid.

2.2.3 Criticisms of Aggregation

Privacy Vulnerabilities

Aggregation is believed to be particularly vulnerable to identification when the number of

aggregated profiles is small, when adversaries have access to external information that can

infer individual contributions [26], or when malicious actors employ differential attacks, which

compare aggregated data over time or against other datasets to identify patterns that could

reveal individual profiles [27]. Aggregation is especially ineffective when input profiles have

distinct, large features as these features often remain recognisable, though at a reduced am-

plitude [28] (see Figure 2.2). This particular vulnerability of aggregation is a critical concern

specific to domestic consumption data as it is often characterised by distinct, large spikes in

consumption at specific times of day such as mornings or early evenings [29]. Furthermore,

regardless of aggregation size, the method is highly susceptible to reconstruction through

elimination. For instance, if an aggregation of 1,000 households is re-released after a contributor

revokes their consent, it is possible to then reconstruct the individual’s profile by analysing

the delta between the two releases. [30]

Utility Loss

High-fidelity data is essential for smart meter applications like research, network management,

and policy-making because it ensures accurate analysis, reliable decisions, and effective energy

system optimisation, ultimately supporting the development of smarter, more efficient infras-

tructures [31]. It is expected that these analyses will be increasingly dominated by machine

learning models with AI-powered management systems seeming inevitable [32], however these

applications require a level of fidelity and nuance aggregation has been found to obscure

[33, 34]. Most impacted are forecasting models, which are expected to be integral to our

efficient integration of renewable resources [35], as their accuracy diminishes significantly with
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aggregated data due to the loss in granularity [36]. Figure 2.2 visualises an aggregate profile

for aggregation sizes 1 through 10.

Figure 2.2: A visual depiction of the impact of aggregation at various aggregation sizes; each
aggregation of profiles, n, represents the aggregation of profiles 1 through n. All profiles aggregated
and plotted here are derived from a user’s annual profile which this dissertation has permission to
release.
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From Figure 2.2, we can see that the qualitative shape of major features can be preserved in

small aggregations. As aggregation size increases, the aggregation process tends to attenuate

extreme values and distinctive spikes from individual profiles, smoothing out the composite

profile as the sum of divergent time series tends to cancel out extreme fluctuations, resulting

in a more uniform and less pronounced overall signal.

Lack of Scientific Basis

Critically, aggregation has little scientific basis; its effectiveness likely depends on dataset size,

data characteristics, and cross-referencing capabilities [7], but because its design is not in service

of some set metric and there exists no standard framework to assess its adherence to policy

or ability to minimize identifiability, we have no general quantitative descriptions of these

relationships. A palpable tension has emerged in the industry and in literature; the conversation

is dominated by those who advocate for a more secure anonymisation policy and those who

criticize the unnecessary rigidity and anonymity of aggregation, but the tension is perpetuated

by our inability to compare the relative privacy of adaptations to aggregation nor the merits

of competitive models. There are several examples in literature of studies which attempt

to quantify aggregation’s efficacy in terms of anonimising specific attributes, like appliance

identifiability [37, 38], or the relationship between utility loss and aggregation parameters [39],

but none attempt to generalise an identifiability assessment. This means literature is sparse

with direct, objective comparisons of aggregation to competitive models, nor evaluations of

its success at enforcing UK privacy policy.

2.3 Quantifying Identifiability

In our pursuit of a method by which aggregation and some competitive model may be assessed,

with this section we survey literature on current approaches to defining identifiability objectively

and how they may translate to a general privacy-quantifying model.
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2.3.1 What is Identifiability?

The pursuit of a universal metric which completely represents the identifiability of a data release

model is improper framing of the problem, as a model’s security can vary significantly across

different datasets due to variations in quality, noise, and data volume [40]. For example, let

us imagine a published aggregation of smart meter data for a small neighborhood where one

resident, a werewolf, consumes an inordinate amount of energy following every full moon. This

unique pattern makes the resident highly identifiable within the aggregation, unless all residents

exhibit similar behavior. If we model a malicious actor’s process for identifying users as cross-

referencing each profile in a data pool with some public representation, known as membership

inference, then identifiability depends on the nature of the input profiles used to generate the

representation, the remaining non-input profiles being considered, and the privacy model itself.

Researchers at Columbia University frame this concept by arguing that identifiability should

be defined as a function of model + data, not just the model [24].

It is additionally misguided to view identifiability as a binary concept when it is better

described in "shades of gray" [24], with a continuous distribution. [24] discusses a potential

Bayesian approach to this problem; by defining a quantity of inference (QOI) or a score which

indicates the amount of an individual’s information identifiable within a data representation,

they suggest constructing a probability distribution of QOIs and measuring the identifiability

of input profiles as the distance between their posterior and prior probabilities relative to the

others in the set of potential contributors. This structure lends itself to the formulation of

ranking the identifiability of a release model as a continuous distribution which depends on

the model output and data being anonymised.

2.3.2 Measuring Identifiability in Sensitive Time Series

Security of major systems requires constant testing and research to keep pace with evolving

threats. Therefore, generalised privacy evaluations should not aim to replicate every possible

attack or cover all potential vulnerabilities, but serve as a benchmark from which more targeted,

context-specific research and model development can be performed [41].
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[9] recognises that identifiability assessments and data membership inference within sensitive

time series is a nascent field which has not yet been properly researched, but proposes a

generalised identifiability quantification through random forest Membership Inference Attacks

(MIAs). MIAs are a key method for this kind of [generalised] evaluation [9] wherein random

forest classifiers are trained on specific critical features of the protected data and output

a score which represents the similarity between model outputs and potential contributors.

Therefore, rather than rigidly testing how conducive a model is to some specific attack, MIAs

quantify the intact input information within model outputs which would be available for

identification to any attack vector.

From analysing sensitive time series medical patient data, [9] found that trend and season-

ality were the essential features of time series data and most identifiable to MIAs. Training on

these features, [9] produced quantified scores with which the relative identifiability of patient

data, anonymised using various models, was ranked and their results demonstrate that training

on these features enhance the efficiacy MIAs for time series. Such an MIA score would represent

a suitable quantity of inference to support the hypothetical Bayesian structure proposed by [24],

and collectively these findings provide a foundation to our pursuit of an unbiased assessor of

the relative identifiability afforded by aggregation and other competitive models.

2.4 Privacy-Preserving Techniques: Case Study of the

US Census Bureau

Maintaining big data privacy is more crucial than ever due to the increasing capabilities of

data analytics and AI, which can easily exploit vulnerabilities in poorly protected datasets,

leading to severe breaches of personal information [11, 42]. Additionally, the rise in regula-

tory frameworks like GDPR in the EU underscore the growing legal and ethical demands for

robust data protection practices to prevent misuse and ensure public trust [43, 44]. In this

section, we examine the U.S. Census, one of the world’s largest modern privacy-preserving data

release programs, and their strategies for ensuring security. We then compare their approach

with the SMIP to highlight its inadequacies relative to international standards and identify

potential areas for improvement.
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The US Census Bureau (USCB) releases detailed demographic data to support policy-

making, economic planning, and research with a mandate to ensure privacy. Using 2010

census data which implemented aggregation as the standard privacy-preservation technique,

an internal experiment showed 46% of the population could be identified with 100% accuracy

using third-party data [45]. To address this, the USCB conducted thorough tests of a variety of

models and ultimately adopted differential privacy for the 2020 census, balancing privacy and

accuracy by adding controlled noise according to an allocated privacy budgets across geographic

levels. This approach has not only made recent censuses quantifiably more secure with defined

guarantees, but more statistically reliable for data users. Table 2.1 contrasts the respective

development stages of the USCB and the SMIP privacy strategies throughout their evolutions.

Development Stage US Census Bureau (USCB)
UK Smart Meter

Implementation Program
(SMIP)

Initial Privacy
Measures

No formal privacy protection
(pre-1840)

No formal privacy protection
(Pre-2012)

Early Enhancements Established response confidentiality
as a legal requirement (1840-1910)

Developed a data access and
privacy framework (2010-2015)

Implementation of
Privacy-Preservation

Model

Introduced statistical disclosure
avoidance measures like
aggregation (1920-1970)

Implemented aggregation as the
primary privacy-preservation

measure (2018-2020)

Advanced Privacy
Techniques

Adopted advanced statistical
techniques such as data swapping
and table suppression (1970-2010)

No significant advancements;
continues default data distribution

without enhanced privacy
guarantees (2020-Present)

Recent Innovations
Introduced differential privacy with

quantified guarantees to counter
identification risks (2020-Present)

N/A

Future Directions
Continues to evolve privacy
measures with a focus on
innovation and adaptation

No planned evolution or
enhancement of privacy policies

Table 2.1: Comparison of the evolution of privacy measures between the US Census Bureau (USCB)
and the UK Smart Meter Implementation Program (SMIP).

From Table 2.1, we can see the USCB approach to privacy has been that of constant

iteration and quantification which is in stark contrast to the SMIP. The USCB’s formerly

unquantified approach exposed the program to unforeseen vulnerabilities as their aggregation

approach was not based on a guarantee nor an adherence to some specific threshold. Their

defined thresholds and "privacy budgets" [45] provide concrete security guarantees and allow
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for tailored privacy policies to meet specific needs. However, without an assessment framework,

aggregation cannot be similarly adapted while maintaining its privacy standards.

[46] discusses how longer data sequences can lead to more effective anonymisation and

reduced risk of identification through aggregation due to increased data complexity. This

approach could, in theory, be used to adapt SMIP’s aggregation mandate by proportionally

reducing aggregation size as the length of input profiles increases, thereby enabling the tar-

geting of specific context-dependant needs. However, we have no standardised mechanism for

quantifying this phenomenon relative to current practices.

The USCB’s discovery of aggregation vulnerabilities could have spurred advancements

within the SMIP, but momentum remains lacking both academically and politically. Table

2.1 does not address the technical and logistical challenges of implementing advanced privacy-

preserving techniques. These methods demand significant infrastructure changes, extensive

testing, and validation to ensure that data utility and system functionality are not com-

promised, which can deter government agencies from adoption [47]. Moreover, time series

privacy-preserving release models remain underdeveloped academically [9]; while general data

privacy is well-researched, the specific challenges of smart meter data and the limitations of

aggregation receive less attention, resulting in limited academic advocacy and sparse policy

recommendations driving change [48]. Overcoming these barriers requires heightened public

awareness, increased academic focus on smart meter data privacy, and the development of

frameworks to test and compare existing systems against new approaches efficiently.

2.5 Alternative Privacy Preservation Techniques

From a survey of literature, four alternative privacy-preserving data release models emerge

as most pertinent to the conversation of replacing aggregation: (1) differential privacy, (2) k-

anonymity (and l-diversity), (3) federated learning, and (4) synthetic data. Differential Privacy

(DP) adds controlled noise to data, providing strong privacy guarantees, but it is unpopular

for smart meter data due to its high sensitivity to added noise, compromising utility [49]. k-
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Anonymity and l-Diversity anonymise data by grouping records by similarity and verifying a

minimum number of records share any individual’s traits, but are vulnerable to pattern analysis

[50] and can reduce data utility through generalisation in time series [51]. Federated Learning

(FL) trains models locally and shares only updates, enhancing privacy but is not designed to

anonymise individual records, making it better suited for system optimisations without direct

human interaction [52]. An approach gaining traction in the field is to generate synthetic

datasets that mimic the statistical properties of real smart meter data without containing any

actual personal information using a generative AI model trained on historic data. This approach

ensures high privacy and utility, making it ideal for publicly sharing data while avoiding privacy

risks and maintaining the detailed insights necessary for analysis and decision-making [53, 54].

Table 2.2 summarises the relative strengths and trade-offs of each model described in literature.

Privacy
Strategy

Privacy
Level

Data
Utility Complexity Scalability Adaptability Rank

Synthetic Data
Generation ↑ ↑ • ↑ ↑ 1

k-Anonymity
and l-Diversity • • ↓ ↑ • 2

Federated
Learning ↑ ↑ ↑ • ↑ 3

Differential
Privacy ↑ ↓ ↑ • ↑ 4

Table 2.2: Comparison of the relative performance of privacy-preservation techniques for big-data
distribution as surveyed from literature.

Synthetic data emerges as the preferred choice; with this, we will review current implemen-

tations of synthetic data and how it may be implemented to replace aggregation as a superior

model.
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2.6 Synthetic Data

2.6.1 Framing Aggregation as a Synthetic Model

Aggregation is essentially a method for producing synthetic data; it takes real data with common

features and creates artificial representations which preserve the statistical characteristics of

those features, much like any other generative model. While aggregation may provide sufficient

utility for some applications of anonymised time series data, most applications of published

smart meter data for which individual house-level, high fidelity data is required, aggregation

is misplaced. The persistence of aggregation as the enforced model for distributed smart

meter data in the UK is largely a result of legislation defining it as a method to achieve

an ultimately undefined goal. This dissertation argues for the scrutiny of aggregation as yet

another synthetic profile generation method and for its direct, levelised comparison with more

sophisticated synthetic generation models.

2.6.2 Comparing Synthetic Models with Aggregation

The most prominent big-data synthetic generation frameworks available depend on AI al-

gorithms which train on source datasets and make predictions on future data given some

constraints [55], and while it remains an underdeveloped field, time series analysis models,

which are tailored to generate such data from time series input, are increasing in availability

[55]. The granularity and fidelity achieved through synthetic data and the fact that it is

often framed as containing "no information" [56] about real people is driving a rapidly growing

popularity within the field of private data distribution [57]; however, the privacy afforded by

synthetic data and how it should be treated legislatively is emerging as a point of controversy.

[58] discusses the legal issues and opportunities of using synthetic data in release frameworks.

Current data protection laws often do not fully address synthetic data; for example, synthetic

datasets are usually exempt from GDPR, the EU’s data protection regulation, unless there are

identification risks, which leads to legal uncertainty [58] as "identification risk" is an ambiguously
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defined stipulation. Some advocates argue synthetic models conatin no real data and hence

should be exempt from scrutiny. Alternatively, while the current state of research and the

existing legal frameworks in the UK are insufficient to rollout synthetic data as an immediate

replacement to the existing aggregation model, perhaps the problem should be approached

differently. Rather than taking the current popular approach of asserting a binary, that is,

synthetic data should either be exempt from privacy scrutiny or not and until it is proven one

way or the other assume it is unqualified to displace aggregation [59], let us instead imagine a

levelised metric upon which synthetic smart meter data can be compared with aggregation as

if it were any other synthetic data model. The problem then becomes demonstrating a superior

average utility and privacy preservation in synthetic data across a representative set of smart

meter data relative to aggregation. In this case, policy may be more susceptible to a ‘nudge’

away from aggregation towards synthetic solutions without requiring a paradigm shift, as

advocated for in [59]. The increased adoption of synthetic data in smart meter data applications

could potentially drive changes in current data protection orthodoxy, moving beyond the binary

classification of personal and non-personal data. Such a shift could lead to improved standards

of protection overall, benefiting both data utility and privacy across all data distribution.

2.7 Implementing a Competitive Synthetic Model

[60] demonstrates a promising Python-based model called ‘Faraday’ for synthetic data gen-

eration using a Variational Auto-encoder (VAE) combined with a Gaussian Mixture Model

(GMM); the model is trained on millions of real world smart meter readings with detailed

metadata. The results of extensive comparisons between real and synthetic data indicate the

generated data closely resembles real-world substation readings, yielding a high fidelity and

utility. These results are not, however, framed in the context of aggregation.

[60] discusses aspects of smart meter data which are both critical for analysis and vulnerable

to being identified, which include peak load and consumption variability. Additionally, [60]

stresses that analysis of real-time smart meter data is crucial in the investigation of privacy-
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preserving data release frameworks for identifying and mitigating privacy risks, which cannot

be fully replicated with synthetic data or simulated environments. Therefore integrating peak

load and variability features with the MIA assessment framework discussed in 2.3.2, tested on

real consumer data, presents as an efficient, scientifically-derived methodology to quantify the

relative privacy of two competitive smart meter data distribution models.

2.8 Identified Literary Gaps and Resulting Research Aims

This chapter highlights significant gaps in the current literature that sustain the unresolved

tension between smart meter data utility and privacy in the UK. Ofgem’s UK privacy policy

mandates that smart meter time series data be anonymised to ensure a "remote" risk of identifica-

tion, yet it lacks a clear method for quantifying this risk or establishing a quantitative threshold.

Aggregation, the standard anonymisation method in the Smart Meter Implementation Program

(SMIP), lacks a scientific foundation; its effectiveness across different aggregation sizes and data

types is presumed but remains unquantified and untested. While the literature suggests that

aggregation size significantly impacts privacy [25], there is no standardised method to quantify

the risk of identification. Without addressing both utility and privacy quantification, there’s

no basis for adapting or validating alternative approaches.

The US Census Bureau’s revision of its aggregation model improves data utility while guar-

anteeing privacy, potentially serving as a model for SMIP. Researchers often use Membership

Inference Attacks to measure the preservation of private information, but these methods fall

short as universal benchmarks due to the interplay between the data, the model, and the

nature of the anonymised data.

Our literature review suggests that using a random forest classifier to perform membership

inference attacks, focusing on key smart meter data features like trend, seasonality, peak load,

and variability, could provide an objective measure of identification risk. Analysing these

scores with Bayesian inference could offer a continuous, relative metric, or the probability of

identification, to assess the performance of aggregation and other distribution methods.
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The evolution of SMIP’s privacy standards and the security of the UK’s smart grid invest-

ment require an objective, comparable privacy metric. This metric would help set minimum

thresholds, facilitate comparisons, and drive the development of alternative models that bal-

ance utility and privacy. AI-generated synthetic data, often cited as a promising alternative

to aggregation, requires a direct, quantified comparison against the current model. This

approach could establish a new methodology for evaluating privacy-preserving data release

models and potentially prompt a reevaluation of aggregation’s effectiveness. This dissertation

seeks to answer the question:

Can synthetic data provide a better balance between consumer privacy and data utility than

the current model, and can we create a quantifiable, universal metric to objectively evaluate

and compare these and other data release models?



3
Methodology

The methodological design of this dissertation aims to define and test a quantitative privacy

assessment framework for smart meter data release models. A generative AI model is developed

and assessed as an alternative to aggregation, and multiple aggregation implementations are

evaluated for their relative security.

The current aggregation model, constrained by a lack of quantitative foundation, reveals

significant shortcomings in the SMIP data privacy policy, contributing to the tension between

privacy protection and data utility in the literature. Existing approaches to assessing a model’s

privacy, such as reconstruction attacks or adversarial testing [61], simulate potential attacks

to measure the effectiveness of anonymization techniques. While these methods are effective

for identifying specific vulnerabilities, they are often limited by their specificity, assessing

vulnerability to certain attack types without generalizing across datasets or anonymization

models. Statistical disclosure control methods, like k-anonymity, l-diversity, or differential

privacy, offer structured, quantifiable approaches but often at the cost of significant data utility

22
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loss for time series data, with privacy metrics that are inherent to the model and not comparable

across different model types. Despite their merits in providing concrete privacy guarantees,

these methods can be too rigid and context-specific for broader applications.

To address these limitations, the assessment of aggregation and alternative models ne-

cessitates a levelized metric that is model-independent and does not rely on knowledge of

specific attack vectors. The framework presented in this dissertation measures the information

preserved in the output that would be available to any attack vector for reconstruction, offering

a more generic, objective approach.

3.1 About the Dataset

Access to the unprecedented EDOL Smart Meter Dataset and associated metadata contributes

to the novelty of this dissertation, and is integral to the quantitative analyses conducted in this

chapter. The dataset contains more than 80 individual residential load profiles over 365 days in

2020, or more than 1.4 million smart meter readings. Despite the more than 70 survey questions

answered by the study’s participants, this study considers (1) total income, (2) house size, and

(3) number of residents to be its primary characteristics as a more detailed analysis of this

metadata would be beyond the set scope. This dissertation develops a Python-based processing

pipeline which divides all year-long profiles into segments of some specified length, parses all sur-

vey answers, and couples the household survey answers with each associated profile as metadata.

3.2 Quantifying Identifiability

Foundational to the analyses this dissertation conducts is a method by which anonymising

release models for smart meter data can be quantitatively assessed for their privacy-preservation,

and compared to competitive models. Our methodology frames this metric as the probability

of identification. This metric is agnostic to the identification attack vector, therefore it should

not necessarily be perceived as the chance of a malicious actor reconstructing sensitive data,
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but as a statistic which indicates the identifiability of true input data in an anonymised output

profile relative to the total pool of profiles being considered for membership.

Figure 3.1: Plots of consumption profiles for two randomly selected days from the participant whose
data release permission has been granted for this dissertation.

Figure 3.2: Plot of the full annual consumption profile corresponding to the participant whose data
release permission has been granted for this dissertation.

Figure 3.3 graphically depicts the process for computing this probability metric, Table 3.1

describes the literature basis to each step in the process, and in this section we elaborate

on the mechanics of each of these steps.
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Step High-Level Explanation Basis

1 From the total pool of EDOL profiles, a sub-
set is selected and used as input to some data
release model.

While the selected subset interacts with the
model, the remaining pool is relevant to this
process as the identifiability of the input pro-
files is only substantial if framed relative to
non-input profiles.

2 The anonymisation model outputs a profile
representation of the input.

This methodology is general to any anonymis-
ing model which takes real data as input and
outputs a representative profile intended for
anonymous distribution, such as aggregation
or a synthetic model.

3 Using a set of literature-based critical clas-
sification features, we use a random forest
classification to score all profiles in the EDOL
dataset in terms of their information’s identi-
fiability within the model output.

[9] presents random forest classification as
an elegant approach to an unbiased assess-
ment of the relative identifiability of infor-
mation within some aggregate representation.
The classification computes critical profile fea-
tures to guide the classification; [9] shows that
trend and seasonality are most pertinent to
time series data, and [60] demonstrate that
incorporating peak load and variability infor-
mation is critical for evaluating smart meter
data representations specifically.

4 Every EDOL profile now has an associated
identifiability score, which is independent of
the other profiles in the pool.

N/A

5 A probability density function is constructed
using the identifiability scores.

The output scores are independent of the
other assigned scores in the set. The PDF
contextualizes the scores relative to the other
profiles being considered for membership, as
[24] posited that an assessment of identifiabil-
ity for some model should be a function of
both the dataset being anonymised and the
model.

6 Using a Bayesian Inference structure, each
profile is assigned a probability of identifica-
tion based on the statistical significance of
their scores relative to the set.

[24] recommends the Bayesian structure, as-
suming some quantity of inference, as the
correct formulation as it frames identifiability
as a continuous, or in "shades of grey" rather
than as a binary.

7 The probabilities associated with the true
input profiles are separated from the set.

N/A

8 Based on the probabilities associated with
the true input profiles, a final identifiability
statistic is assigned to the model/dataset com-
bination.

The final assessment is a function of both the
model and the studied dataset.

Table 3.1: Explanation and justification for the identifiability test steps depicted in Figure 3.3.



3. Methodology 26

Figure 3.3: Step-by-step process for quantifying the probability of identification. See Table 3.1 for
detailed explanation of steps.

3.2.1 Random Forest Classification

We train our random forest classification on the complete EDOL-provided database of profiles

with all associated metadata and creates an ensemble of decision trees, where each tree is a

simple model which classifies data based on profile features. Each tree is trained on a different

random subset of the data, and at each split, it randomly selects which features to consider.

The final prediction is made by aggregating the outcomes of all the trees to produce an estimate

of the information in common between the anonymised output and each profile, indicating how

identifiable a profile is within the anonymised representation. We implement this common

form of trained classification in Python using the RandomForestClassifier class from the

sklearn.ensemble module as follows:

1. The classification model in this study utilizes critical features from the time series data,

specifically focusing on seasonality, trend, peak-to-mean ratio, and variability. The season-

ality component is captured using a Fourier Transform, which decomposes the time series
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into its constituent frequencies, thereby highlighting periodic patterns. Mathematically,

this is represented as:

X(f) =
N−1∑
t=0

xte
−i2πft/N (3.1)

where X(f) denotes the Fourier coefficients at frequency f , N is the total number of

discrete time points, and xt is the value of the time series at time t. This transform enables

the identification of dominant frequencies within the time series, which are indicative of

its seasonal patterns. The extracted Fourier coefficients serve as training parameters for

the model, capturing the essential periodic features of the time series data.

The trend is represented by the observed Pearson correlation between the model output

and input data, computed as

r =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2

(3.2)

Additionally, the peak-to-mean ratio (PMR) and standard deviation are computed to

encapsulate the peak load behaviour and variability, respectively. PMR is defined as

PMR = max(xt)
1
N

∑N−1
t=0 xt

(3.3)

and variability, or the standard deviation as

Variability =

√√√√ 1
N

N−1∑
t=0

(xt − µ)2 (3.4)

where µ is the mean of the series.
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2. These features form the input vectors for training the random forest classifier, F , com-

prising multiple decision trees {T1, T2, . . . , Tm}. The classifier predicts the likelihood, or

a score out of 100, of a profile’s information’s inclusion in the model output by averaging

the predictions of these trees,

F(fi) = 1
m

m∑
j=1

Tj(fi) (3.5)

3. We assess the identifiability of synthetic profiles using the output of the RandomForest-

Classification Python class which are normalised scores representing the likelihood that

each individual tested profile was a true input

Score(fsynthetic) = F(fsynthetic) (3.6)

3.2.2 Probability of Identification

Given our methodology for scoring a profile’s identifiability within a model output, this section

places those scores in a statistical context by comparing them to the rest of the dataset. We

construct a probability density function (PDF) using the identifiability scores of all profiles in

the dataset. This PDF helps us determine how common or rare a particular score is, which is

used to assess the likelihood of a profile being a true input. Using Bayes’ Theorem (Eq. 3.7), we

calculate the posterior probability that any individual profile, pi, within a pool S, contributed

to the models output or would be identified as a contributor.

P (I | Score(pi)) = P (Score(pi) | I) · P (I)
P (Score(pi))

(3.7)

where:

• P (I | Score(pi)) is the posterior probability: the probability that profile pi is a true

input given its identifiability score.

• P (Score(pi) | I) is the likelihood: the probability of obtaining a specific identifiability

score if pi is indeed a true input.
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Figure 3.4: Sample probability density function (PDF) computed using scores from subsection 3.2.1.

• P (I) is the prior probability: the initial probability of any profile being a true input,

based on the proportion of true inputs in the dataset.

• P (Score(pi)) is the marginal probability: the overall probability of observing the

identifiability score Score(pi) across the entire dataset.

The following outlines our process for integrating our computed quantities of inference with

Bayes’ theorem for an ultimate probability of identification.

Computing the Probability of Identification

1. Prior Probability (P (I)):

The prior probability represents our initial belief about the likelihood of any profile being

an input to the model, assuming no additional information. It is calculated as the ratio
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of the size K of the input profile set I to the size of the pool |S|:

P (I) = K

|S|
(3.8)

2. Likelihood (P (Score(pi) | I)):

The likelihood represents the probability of observing a specific identifiability score, Score(pi),

for a profile pi, given that it is a true input. This is derived from the PDF (Figure 3.4),

which shows the distribution of identifiability scores:

P (Score(pi) | I) = PDF(Score(pi)) (3.9)

3. Marginal Probability (P (Score(pi))):

To ensure the posterior probabilities sum to 1, we normalize them by the total probability

of the scores, or the marginal probability:

P (Score(pi)) =
∑

j

P (Score(pj) | I) · P (I) (3.10)

4. Posterior Probability (P (I | Score(pi))):

The posterior probability updates the prior probability with the likelihood to reflect the

new evidence provided by the scores:

P (I | Score(pi)) = P (Score(pi) | I) · P (I)
P (Score(pi))

(3.11)

=⇒ P (I | Score(pi)) = P (Score(pi) | I) · P (I)∑
j P (Score(pj) | I) · P (I)

(3.12)

We interpret P (I | Score(pi)) as the probability that profile pi contributed to some data

representation, which we refer to as the probability of identification.

With both input and non-input profiles assigned some probability of identification, we can

isolate the input set and their probabilities for an aggregate probability of identifying an
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input, specifically. With this, we have a general metric with which competitive models can

be compared for their privacy.

3.3 Quantifying the Efficacy of Aggregation

In this section we use our probability of identification metric to better understand the efficacy

of the incumbent aggregation model. This section describes our methodological approach

to assess the impact of the aggregation size and the length of profiles being aggregated; we

also inject artificial outliers in the input set to quantitatively assess aggregation’s ability to

anonymise outlier, ‘werewolf’ profiles.

3.3.1 Average Identifiabiltiy

The average performance of aggregation across the entire EDOL dataset is assessed by repeating

our probability of identification methodology across multiple trials, each with a unique input

subset. For each trial, after assigning each profile’s respective probabilities, we compute two

evaluative metrics: precision at K, and mean rank.

Precision at K (P@K) measures the proportion of true input profiles which fall within the

top K ranked profiles across all trials, where K is the size of the input set. Let I be the set

of true input profiles, and let RK be the set of the top K profiles ranked by the probabilities

obtained from Bayesian inference. We define precision at K as:

P@K = |I ∩ RK |
K

(3.13)

From here, the model is holistically assessed based on the average P@K across all trials and

the mean input rank, or the average of the input profiles ranks across all trials.
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3.3.2 Aggregation Size Investigation

As discussed in Section 2.2.2, all enforced minimum aggregation sizes are not based on quanti-

tative evidence; here, we lay quantitative foundation to these policies by testing the impact on

identifiabiltiy of varying aggregation size. Using aggregation sizes K = {2, 3, . . . , 19}, we define(
|S|
K

)
unique trials, where |S| represents the total number of 1-day load profiles parsed from

the EDOL dataset and K is the aggregation size, each trial consists of a unique aggregation of

K inputs, and the remaining non-input profiles are included in the consideration pool. Every

value of K yields
(

|S|
K

)
P@K values, which are averaged and represent the model’s relative

privacy performance at that aggregation level.

3.3.3 Profile Duration Investigation

With this test, we reprocess the EDOL dataset such that, for l_p = {1 day, 2 days, 7 days, 30

days, 90 days, 365 days}, each year-long EDOL profile is parsed into 365 days//lp individual

sub-profiles of length lp. From here, the same methodology described in subsection 3.3.2 is

repeated for all values of lp and aggregation sizes K = {2, ..., 10} so as to investigate the

impact of profile size on identifiability with a variable aggregation size.

3.3.4 Outlier Profile Identifiability Investigation

With this test we assess the aggregation models ability to anonymise profiles with distinct

features; we repeat the methodology described in subsection 3.3.2, however for every trial, one

input profile is randomly selected to have artificial outlier features added to it. The mean rank

of the outlier profile is then compared to the mean rank of all other input profiles as a means

of assessing whether the outlier profile is more or less identifiable, on average.

While it is infeasible to replicate all possible variability in real-world smart meter readings,

our objective here is to assess whether outlier features result in increased identifiability, and

what the impact of the number of outlier features present in a single profile is on that profiles
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identifiability. We synthesise the artificial outlier features by identifying the maximum half-

hourly reading across the EDOL dataset, rmax, randomly selecting an hour-long period within

the selected input profile, and setting this periods reading to be some random value, rounded

to the nearest MWh, within the range (rmax × 2, rmax × 3). This process is repeated with a

variable number of outlier peaks, ranging from 1 to 8.

3.4 Synthetic Load Profile Generation

A primary output of this dissertation is a comparison between the aggregation model and an

implementation of a synthetic load profile generative artificial intelligence. We train a Python-

based generative AI on the EDOL profiles and their primary metadata features. The model

design is based on [60] which develops Faraday, a generative AI capable of generating synthetic

load profile data based on conditional metadata.

Input Data

Log-normal Transformation

Conditional VAE Training

Map to Latent Space Decode Latent Vectors

Train GMM on Latent Space Compute Losses (Reconstruction, MMD, Quantile)

Sample and Append Labels Synthetic Load Profiles

Filter by User Inputs

Figure 3.5: Flowchart depicting the information flow for the synthetic load profile generation process.
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At a high level, our recreated version of Faraday begins by training a conditional Variational

Autoencoder (VAE) to encode the input dataset into a latent space and training a Gaussian

Mixture Model (GMM) on this latent space to capture its distribution. During inference,

latent vectors are randomly sampled from the GMM and decoded using the trained VAE

decoder. To enable conditional sampling, labels are included with the latent codes during GMM

training (see Figure 3.5). While [60] has not released code nor detailed its implementation, this

dissertation’s recreation was shared with the author of [60] who confirmed the approach and

parameter assumptions are correct with small implementation adjustments recommended. The

following details our technical implementation with training, encoding, and decoding being

conducted using the popular PyTorch library:

i. Conditional Variational Autoencoder (VAE) Training

The Conditional Variational Autoencoder (VAE) consists of an encoder, a latent space, and a de-

coder:

Encoder and Latent Space

The encoder maps the input data x and conditional metadata y to the latent space z. The

encoder is parameterized by ϕ, which outputs the parameters of the latent distribution, like

the mean µ(x, y) and variance σ(x, y) of a Gaussian distribution:

z ∼ qϕ(z|x, y) (3.14)

Where qϕ(z|x, y) represents the distribution of z given x and y.

To enable backpropagation through the stochastic sampling process, the reparameterization

trick is employed. The reparameterization trick expresses the sampling operation z as a

deterministic function of µ(x, y), σ(x, y), and an auxiliary noise variable ϵ, which is drawn



3. Methodology 35

from a standard normal distribution:

z = µ(x, y) + σ(x, y) ⊙ ϵ, ϵ ∼ N (0, I) (3.15)

This trick allows gradients to be passed through the sampling process, facilitating the opti-

mization of the VAE.

Decoder

The decoder is parameterized by θ and reconstructs the input data x from the latent repre-

sentation z and conditional metadata y:

x̂ = pθ(x|z, y) (3.16)

Where x̂ is the reconstructed data.

ii. Gaussian Mixture Model (GMM) Training

In traditional VAEs, the latent space is modeled using a unimodal Gaussian distribution. For

the Faraday model, a Gaussian Mixture Model (GMM) is used to better capture the complex

distribution of the latent space. A GMM represents a data distribution as a combination of

multiple Gaussian distributions, each with its own mean and variance, which allows the model

to capture complex, multimodal distributions that enable the model to better approximate and

separate diverse patterns within time series data. The GMM is trained on latent representations

of data, where the distribution of the latent space z is modeled as:

p(z) =
K∑

k=1
πkN (z|µk, Σk) (3.17)

Where:

• K is the number of mixture components,
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• πk are the mixture weights,

• µk are the means,

• Σk are the covariance matrices of the Gaussian components.

iii. Inference and Synthetic Data Generation

During inference, new latent vectors are sampled from the GMM, z̃ ∼ p(z), such that the

generated samples match the distribution of the training data. The decoder network then

transforms the latent vectors back into the data space:

x̃ = Decoderθ(z̃, y) (3.18)

Where x̃ represents the generated synthetic data.

Figure 3.6: Graphic of our synthetic generation methodology, with the mathematical process
summarized. The output of this system are unique, synthetic profiles which are representative of
a profile whose metadata matches the specified model input.
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3.5 Comparing Aggregate and Synthetic Data

In our comparison of aggregation and synthetic data, we must benchmark model output from

both a quality and privacy standpoint, as a model with enhanced privacy over aggregation is

only valuable if quality is maintained or improved, and vice-versa.

3.5.1 Quality Comparison

From [60], we know the quality of output for a data release model depends on fidelity and

utility. An investigation of the real-world utility of generated data is beyond the scope of this

dissertation as the primary shortcoming of aggregation which we aim to address is the loss of

critical features [62], therefore here we assess quality strictly from a fidelity standpoint. Our

evaluation of the fidelity of synthetic data relative to aggregated data measures differences in

quantile loss and the statistical similarity between input and output.

Quantile Loss

Quantile loss measures how well the synthetic data captures the distribution of the real data

at various quantiles. We calculate the quantile values for both real and synthetic datasets and

compute the absolute differences between them using the 5th, 50th, and 95th percentiles.

Statistical Similarity

The peak-to-mean ratio (PMR) and variance (σ2) for the datasets are used to capture statistical

similarity, where variance is computed as follows:

σ2
X = 1

N − 1

N∑
i=1

(xi − µX)2 (3.19)
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Comparison Implementation

Fidelity metrics are computed for the models’ output and each of their inputs; the difference

between the average of the input metrics and the output metrics is used to benchmark data

quality, and these differences were averaged across all trials which consisted of every unique

input combination as in subsection 3.3. The trial sets and synthetic generation method are

carried over from 3.5.2 where input profiles have identical metadata and the synthesized data

was generated using this metadata as the prompt for each trial.

3.5.2 Anonymity Comparison

P@K and outlier mean rank are used to compare privacy preservation across the two models,

as demonstrated in subsections 3.3.2 and 3.3.4, respectively. 10-profile aggregations are used

in this comparison as this is a common minimum for published databases in the UK. The

dataset is reorganised by survey answers such that for each trial, 10 random profiles whose

participants share the same responses to the three primary questions (household income, home

size, and number of residents) are added to the pool as the input set in addition to all others

who have different answers, with the remaining profiles whose metadata is the same as the

input set being discarded.

The synthetic model is designed such that when profiles are generated based on specific

conditions, the model primarily relies on training data with identical metadata to construct the

representation. However, it also incorporates features from training data with partial metadata

matches to introduce diversity. In our testing, we consider only those training profiles with

metadata that exactly matches the AI prompt as true inputs, meaning they are the only

profiles at risk of being identified in the model output.

Precision at K Comparison

Using the newly organised trial sets, we perform a P@K test as in 3.3.2 whereby all of the

trials’ P@K outputs are averaged to a single metric. This test is conducted once using the
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generative AI as their anonymising model and once using aggregation.

Outlier Identifiability Comparison

Outlier identifiability is assessed using the same trial sets and the same synthetic generation

procedure as in the previous test; the outlier injections and identifiabiltiy assessments are

conducted following the same method as described in 3.3.4 for both models.

3.6 Conclusion

This chapter defines two novel methodologies used in this dissertation’s analyses: a method for

quantifying the average anonymising efficacy of a smart meter data release model given some

data, and a method for using this quantification framework to compare two competitive release

models. We use the framework to quantify the relative anonymising performance of aggregation

with a variable aggregation size, variable input profile length, and an injected outlier, all to

lay scientific foundation to the current regulation. We develop a functional generative AI for

producing synthetic load profiles, and compare the fidelity and anonymity of its output with

aggregation to test whether the incumbent privacy model is truly competitive.



4
Results

In this section we present two sets of results: the results of applying our privacy assessment

framework to aggregation while varying model parameters, and the results of our comparison

of our generative AI with a 10-house aggregation model in terms of fidelity and privacy. This

chapter’s results not only demonstrate the superiority of the generative AI developed for this

dissertation, but formalise previously assumed behaviors of aggregation, such as the specific

impact of increasing aggregation size.

4.1 Quantifying Aggregation Privacy

Using our average probability of identification test, we measure the impact on identifiability of

tuning aggregation parameters so as to lay quantitative foundation to current legislation and

to enable adaptations to current protocols without sacrificing privacy standards.

40
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4.1.1 Impact of Aggregation Size

First, we investigate aggregation size, or the number of profiles being aggregated to produce an

output, as it is assumed to have the greatest impact on the quality of an aggregate output [25].

Figure 4.1: The average P@K metric for all trials at each aggregation size is plotted, with a fit
negative exponential curve superimposed. P@K represents the number of true input profiles whose
probabilities of identification are ranked in the top K across all profiles which were evaluated, on
average across all trials where K is the aggregation size. Here, a low P@K indicates a low risk of
identification.

From Figure 4.1 we can qualitatively see an exponential relationship between aggregation

size and the identifiability of aggregation input; modelled as an exponential, we get the following

fit negative relationship between P@K and aggregation size

y = 0.5865 · exp (−0.2747 · x) + 0.2761 (4.1)
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The fit, which produces a strong aggreement of R2 = 0.9417, indicates privacy and aggregation

size are positively correlated as a low P@K indicates low identification risk. The negative

exponential shape indicates a negative correlation with a diminishing return, meaning small

changes in the size of aggregation at the low end have a more substantial impact on identifiability

than those at the high end.

4.1.2 Impact of Input Profile Length

Here, we vary the length of the profiles used as input to the aggregation and test the impact

of this parameter across multiple aggregation sizes.

Figure 4.2: The average P@K metric for all trials at each aggregation size is plotted, with each
curve corresponding to trial sets consisting of profiles of some specified length. Here, a low P@K
indicates a low risk of identification.

From Figure 4.2 we can qualitatively see that as profile length increases, identifiability

decreases; this trend is observed most prominently at high aggregation sizes. More precisely,

across all aggregation sizes we get an average Pearson correlation coefficient between P@K and
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profile length of -0.68, indicating a strong negative correlation.

4.1.3 Identifiability of Outlier Profiles Within Aggregations

A common criticism of aggregation is its inconsistency at preserving anonymity of data which

is an outlier within the dataset being aggregated [63, 28]. Here, we test aggregation’s ability

to anonymise profiles with strong outlier features and whether the number of these outlier

features impacts their identifiability.

For each trial, we compute the difference between the identifiabiltiy rank of the profile

selected for outlier features to be added and the average non-outlier input profile, and we

average this metric across all trials for every number of added outlier features.

Figure 4.3: The difference between the mean rank of the outlier profile and the mean rank of all
other non-outlier profiles is plotted against the number of outlier features artificially added to the
selected input profile. The dashed horizontal line at 0 represents the threshold above which the outlier
profile is less identifiable than the average input profile.

Figure 4.3 depicts these results; we see that the presence of few outlier features tends to result

in that profile being more identifiable within an aggregation, but as the number of artificial
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features increases, the relative identifiability of the outlier profile decreases. Beyond 4 features,

the outlier profile becomes less identifiable than the average input profile. This counterintuitive

result might be due to the increased number of distinct features causing the outlier profile to

blend into the aggregation more effectively, thereby diluting its overall distinctiveness and

reducing its identifiability relative to the non-outlier profiles.

For each specified number of outlier features, we repeat all trials using multiple aggregation

sizes. Figure 4.4 plots the overall identifiability of the model across a variable aggregation size

when artificial outliers are or are not included, using P@K as our benchmark, and Table 4.1

summarises these results as the difference in average P@K for each experiment.

Figure 4.4: Each figure in the stack represents our results corresponding to a specified number of
added outlier features. The orange curves correspond to our identifiablity assessment of trials with
injected outliers, and the trials containing no injected outlier are represented by the blue curves. Here,
a low P@K value means a relatively low risk of identification.
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Number of Outlier Features

1 2 3 4 5 6 7 8

Difference in

Average

P@K

-0.09 -0.07 -0.05 0.01 0.07 0.02 0.07 0.05

Table 4.1: For each experiment represented by an individual plot in Figure 4.4, we summarise their
results by computing the average P@K across all trials with no injected outliers and those with the
injected outlier and show their differences here. A negative difference indicates the trials with an
injected outlier are more identifiable, on average.

From Figure 4.4 and Table 4.1, we see that when a profile with few outlier features is added

to an input set, the model’s output is, on average, more identifiable than that of the same

model applied to an identical trial set without an injected outlier. At and beyond 4 artificial

outlier features, the trials with the injected outlier exhibit less identifiability, on average, than

those without the outlier. This reduced identifiability may result from the outlier features

obscuring other input profiles’ subtle characteristics, leading to a more homogenised and thus

less distinguishable output.

4.2 Comparative Analysis: Aggregation and Syntheti-

cally Generated Data

4.2.1 Fidelity Retention

In this subsection we analyse the fidelity retention from input to output for both aggregate

data and the synthetic profile generation model. The metrics by which fidelity is assessed are

peak-to-mean ratio, standard deviation, and quantile losses.
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Figure 4.5: Comparison of the relative fidelity between aggregate data and our synthetic model. The
normalised difference represents the difference between the fidelity metric computed for the model
output and the average computed across the input profiles, normalised.

From Figure 4.5, we see that across all metrics the synthetic model outperforms the 10-house

aggregation as the lower the normalised difference, the more fidelity retention from input to

output with the comparison of their medians exhibiting the biggest discrepancy across the two

models and the comparison of peak-to-mean ratio showing the least discrepancy. Figure 4.6

plots three randomly selected training profiles corresponding to a particular metadata condition,

and synthetically generated profiles using the metadata condition as the prompt.
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Figure 4.6: Visualisation of synthetic profile results; the leftmost column of randomly selected real
training profiles, the center column depicts 3 examples of 10-house aggregations, and the rightmost
column depicts 3 examples of synthetically generated profiles. All real profiles, aggregations, and
synthetic profiles are derived from the set of profiles which this dissertation has permission to release.

Qualitatively, we can see clear advantages to the synthetic approach in terms of information

preservation. Domestic load profiles are often characterised by distinct, large usage spikes

throughout the day whose information is critical for analysts, and while we see an overall

reduction in amplitude and variability in the aggregation, the synthetic data preserves high-

amplitude spikes in consumption; the synthetic model therefore produces qualitatively more sim-

ilar consumption patterns and profiles which are more statistically similar to their training data.
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4.2.2 Privacy Comparison

Precision at K Comparison

Table 4.2 presents the results of our comparison of the average identifiability, or an average of

the P@K computed across all trials, between a 10-house aggregation and our synthetic model.

10-House

Aggregation

Synthetic

Model

Average

P@K
0.36 0.21

Table 4.2: The average P@K represents the average anonymisation performance across all trials
using the stated model. A low P@K value indicates better anonymity in the output.

We see that on average, our synthetic model anonymises input data considerably better

than the 10-house aggregation.

Outlier Anonymisation Comparison

Table 4.3 summarises the results of our comparison of the models’ respective efficacy at pre-

serving the anonymity of input profiles containing distinct outlier features, using the difference

in mean rank of the injected outlier as our indication.

Number of Outlier Features

1 2 3 4 5 6 7 8

Average
Difference

in Mean Rank
2.72 1.01 1.88 -0.38 0.67 0.81 -0.03 0.37

Table 4.3: The average difference in mean reank represents the difference between the mean rank
of the injected outlier profile across all trials using the generative AI and aggregation. A positive
difference indicates the synthetic model exhibited a superior perforance.

In Table 4.3 a positive difference indicates the synthetic model acheived higher anonymity
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and a negative score indicates the aggregation model did; we see the synthetic model outper-

forms the 10-house aggregation in almost every instance, but most prominently when fewer

outlier features were added. Notably, at 4 and 7 outlier features the aggregation performs

better than the synthetic model by a relatively small margin.

4.3 Conclusion

This chapter quantifies the impact of specific aggregation parameters on the anonymity of

aggregated data, revealing that privacy preservation comparable to or better than the 10-house

standard can be achieved with smaller aggregation sizes, especially when input profile length is

varied. We demonstrate that while aggregation often fails to anonymise distinct outlier profiles,

beyond a certain threshold of injected variability, these outliers become less identifiable than

average profiles and can even reduce the overall identifiability of the entire dataset.

In our comparative analysis, the generative AI model consistently outperforms the 10-

house aggregation in both fidelity retention and average input identifiability. Additionally,

the synthetic model proves superior in most outlier-injection scenarios, with only two instances

where aggregation marginally outperforms it.



5
Discussion

In this chapter we interpret the results of our analyses and discuss their novel contributions to

literature, their implications on policy and smart meter data privacy practices, the limitations

of this study, and how our results can be complemented by future work.

5.1 Interpretation of Quantitative Results

From our review of the data privacy strategies published by UK energy providers and private

data distributors [23, 8], we know implementers of aggregation make two primary assumptions,

both of which are founded on intuition and qualitative assessment rather than robust scientific

evidence: the anonymity afforded by aggregating data diminishes with small aggregation sizes,

and strong outlier features within aggregations are most vulnerable to identification. Our

results indicate that both of these assumptions are broadly true, but with new dimensions of

these relationships elucidated. Our discovery of a negative exponential relationship between

50
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risk of identification and aggregation size tells us that the addition or removal of profiles from

a small aggregation is more impactful than those from a large aggregation, and from our fit

function we know the marginal privacy gain with each additional profile is asymptotic with

no significant impact beyond the 11-profile aggregation.

From varying the input profile length, we see the same general negative exponential rela-

tionship for all lengths, but a strong correlation which indicates longer input profiles yield an

output with a lower risk of identification. This behavior is intuitive and was postulated by [46],

but our results not only serve as evidence to this idea, but define the precise quantitative nature

of this relationship; a likely explanation is that the added complexity of more datapoints dilutes

the significance of the identification of any single feature and increases the dimensionality of

the data, reducing the confidence of any membership inference.

Our testing of the relative identifiability of profiles with artificially injected outlier features

reveals an interesting trend: profiles with distinct features are initially more identifiable within

an aggregation, but this identifiability diminishes as additional outlier features are added.

Specifically, once the number of outlier features exceeds four, the outlier profile becomes,

on average, less identifiable than the non-outlier profiles within the input set. Moreover,

beyond this threshold, not only does the outlier profile’s identifiability decrease, but the overall

identifiability of all input profiles within the aggregation decreases as well.

While the heightened identifiability of an outlier profile with distinct features is intuitive, the

subsequent reduction in identifiability as more outlier features are added is less straightforward.

This counterintuitive outcome can be explained by considering the dynamics of feature represen-

tation within the aggregation. When few outlier features are present, their distinctiveness allows

them to dominate the aggregation, making the outlier profile highly identifiable. However, as

the number of outlier features increases, these features start to overshadow and obscure the

subtle characteristics of non-outlier profiles that would otherwise contribute to the aggregation.

Consequently, this obscuration enhances the overall anonymity of the input set.

As for the outlier profile itself, the addition of more distinct features can paradoxically lead

to a decrease in its identifiability for two main reasons. First, the increased dimensionality
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spreads the unique, spiky characteristics across a broader range of variables, diluting their

individual impact within the aggregation process. Second, as the outlier profile accumulates

more distinctive features, it begins to diverge significantly from the common patterns present

in the rest of the dataset. This divergence makes it less likely that any single feature will

stand out as exceptionally unique within the aggregation, effectively ’flattening’ the profile’s

overall distinctiveness. As a result, the outlier profile may blend into the aggregated data more

effectively than profiles with fewer, but sharper, outlier features. This blending effect can lead

to a scenario where the outlier profile is actually less identifiable than the average non-outlier

profiles, as its numerous distinct features become a form of noise rather than a clear signal.

Our comparison of aggregation with a Python-based generative model shows that even a

simple AI implementation significantly outperforms aggregation in both fidelity and anonymity.

Our fidelity metrics show that more statistical and quantile information is preserved from the

training data which matched the AI prompt to its output than in an aggregation of the same

number of profiles. In terms of anonymity, the 10 matched training profiles are, on average,

over 40% less identifiable than the input to a 10-profile aggregation. The generative model

also outperforms aggregation in masking profiles with outlier features in all but 2 experiments.

One possible explanation is that aggregation produces flatter, less variable profiles, a weakness

that makes them less similar to the input data. By contrast, the synthetic profiles have more

variability and distinct features, which the classifier recognises as closer to the input. In reality,

perhaps both representations attenuate the large outlier features but the classifier deems the

natural variability preserved in the synthetic data as being closer to the input which has many

injected spikes. These findings highlight the importance of assessing both the model and the

data together for effective anonymity, as these results would likely vary strongly with the

average spikiness of the training data.
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5.2 Novel Contributions

This dissertation’s contributions are threefold: the novel probability of identification assessment

methodology demonstrated, the quantitative description of the nature of the anonymity afforded

by aggregation, and a direct, quantified comparison between aggregation and the alternative

synthetic model, all of which is tested using a real, metadata-rich profile set.

An assessment of the identification risk of an anonymised dataset is not itself a novel concept,

however it remains largely unexplored for time-series analysis. No generalised approach to

assessing the identification risk of a profile anonymised by some model is found in literature,

but [24] informally posits that taking a Bayesian approach with some "quantity of inference" is

the correct formulation to derive such a metric; they remark that identifiability is not binary,

but continuous and given how dependant an anonymisation model’s performance is on the

nature of the input data, this metric should be a function of model and data. In their article,

the quantity of inference is left generic. Additionally, random forest classifiers have been applied

to membership inference attacks and tested as a quantification of the preserved information

from input to output across medical time series anonymisation models [9]. The novelty of

this dissertation’s approach is its combination of these distinct angles developed in literature

to produce a generalisable and comparable probability of identification. This contribution is

particularly timely given the rapid advancements in data analytics and AI, which necessitate

a shift from heuristic-based privacy approaches to those grounded in empirical evidence and

capable of scaling with technological advancements.

Many of our results pertaining to the quantification of the efficacy of aggregation are, in

some sense, a reinforcement of the previously held intuitions expressed in policy, albeit with

additional detail and relationships quantified. However, it is crucial that, as our systems

become increasingly big-data driven and the large-scale distribution of sensitive data more

demanded, we must protect user safety using quantified, extensible privacy models which can

be methodically adapted to the quickly changing landscape. The alignment of our results, such

as the relationship between anonymity and aggregation size, with the assumptions of current
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policy is better described as epistemic luck for policymakers than it is a reinforcement of an

existing scientific conclusion. A security strategy built on unfounded assumptions is tenuous

even in cases wherein these assumptions are proven correct, as the uncertainty compounds with

each corollary, leading to disastrous, unexpected effects; this was seen in 2010 when the USCB

discovered significant customer data insecurity in multiple dimensions of their system which,

until that point, had been built on a heuristic aggregation model whose specific limits and weak-

nesses were unquantified and assumed to be minor as their system evolved on this foundation.

The novelty of our benchmarking of aggregation lies in its transformation of intuitive

assumptions into scientifically parameterised principles. The discovered negative exponential

relationship shows that increasing aggregation size is finite in its ability to improve the security

of a system, and our outlier study demonstrates specific contexts in which aggregation is most

vulnerable. Given the characteristic spiky patterns seen in domestic consumption profiles,

the superiority of the synthetic model at preserving privacy with respect to these features

represents a significant improvement over aggregation. Additionally, without such quantified

evidence, simply doubling the mandated aggregation size to improve security or depending

on aggregation to obscure especially sensitive profiles with specific, distinct features would

be logical extensions of the existing assumptions, which have both been disproved. Given the

ubiquity of aggregation as a privacy-preservation mechanism, it is unlikely to be replaced across

all sectors overnight; as the SMIP and other data distribution systems evolve, this baseline

description of their current implementations will be valuable.

Our application of the probability of identification framework to the direct comparison of

aggregation with a synthetic model not only represents the first of its kind and a template

upon which future comparisons can be made, but compelling evidence of the inadequacy of the

aggregation model. The synthetic model used in this study is simplistic, unrefined, and trained

on a smaller dataset compared to the Faraday model [60]. The goal of this dissertation is not

to replace aggregation, but to demonstrate the benefits of investing in synthetic data and how

easily aggregation can be outperformed. By directly comparing these models, we’ve established

a baseline for the current system and shown that aggregation is no longer competitive in
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today’s data security environment.

5.3 Implications for Policy and Practice

5.3.1 Redefining Privacy

This dissertation addresses the ambiguous definition of privacy in both policy and practice.

Legislation often equates privacy with risk of identification, but lacks a robust, objective

measure of this risk, leaving data distributors without clear security standards. Absolute

anonymity, as noted in the Scottish Power Energy Networks Smart Metering Data Privacy

Plan, is impractical as it eliminates data utility. The challenge, then, is to maximise data

utility while maintaining an acceptable level of identification risk. But what constitutes a

safe risk? Establishing this threshold is crucial for a scientifically rigorous SMIP security

strategy. Differential privacy offers a framework for such quantification, inherently setting an

input-independent threshold. In contrast, models like aggregation and synthetic data require a

data-driven, experimentally derived metric. Assessing the security of any system necessitates

experimentation with datasets that reflect the variability of the data being protected, allowing

for specific privacy guarantees based on transparent assumptions about the data.

This dissertation advocates for replacing aggregation as the standardised anonymisation

model for UK smart meter data. The stagnation in current policy stems from a lack of

quantitative benchmarks, but with our benchmark and the criticisms of aggregation’s inse-

curity, we must ask: If the security standard evolves, what should the probability of identi-

fication be for the new model?

This can be approached in two ways: First, by setting a baseline that matches the current

standard, ensuring any new model that performs as well as or better than the current practice

is "safe." Preliminary tests suggest that the simple synthetic model developed here could be an

acceptable replacement under this criterion. Second, by leveraging methods for quantifying a

data representation’s utility alongside our new privacy metric, we can optimise for the required
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utility while maximising privacy. In some cases, determining the maximum permissible risk

of identification might require specific attack simulations, but by quantifying both utility and

privacy, we enable a more precise and efficient balance between the two.

5.3.2 Reevaluating the Role of Aggregation

Aggregation not only represents the standardised anonymisation method for smart meter data

distribution in the UK, but also a common practice across many industries worldwide and

a "main source" for IoT systems, Cloud environments, Artificial Intelligence and Machine

Learning applications products in the Digital Single Market [64]. Its widespread use legitimises

it, its ease of implementation makes it an attractive option for managers, and the notion

of combining multiple sets of data to anonymise while retaining information is an intuitive

concept which policymakers of any technical background can accept. Data privacy is rarely

discussed in the smart meter rollout, with concerns like skepticism of government surveillance

and resistance to environmental policies being more prominent and major contributors to the

stagnation in new smart meter adoption. The use of aggregation has not been a major issue, and

changes to the SMIP security system may expose flaws and require new customer acceptance

of complex, abstract management systems; the proposal of an AI-based solution could lead to

further public skepticism, making this dissertation’s proposal difficult to implement under the

SMIP’s primary directive of full smart meter coverage in the UK.

However, mounting evidence shows the insecurity of aggregation, and this dissertation

demonstrates its shortcomings in fidelity and privacy. The long-term success of the smart

meter rollout relies on the utility and security of its data as well as the maintenance of

public trust, making the evolution of the distribution model essential and in the best interest

of all stakeholders involved. Simply replacing aggregation with a more secure alternative

addresses a symptom, not the root issue. We should be working to establish probability of

identification thresholds where relevant and define the security guarantees that come with

them in an accessible, public-facing manner. With this bsqprivacy-first framing, the onus is
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not on the model to be intuitive nor present as safe to the consumer, but on the security

guarantee communicated to the public to be sufficient. This public communication of privacy-

preserving methods, such as Apple’s detailed public-facing explanations of their differential

privacy and aggregation policies, plays a critical role in building consumer trust. Apple frames

these techniques in an accessible way, emphasising how added noise and data aggregation make

it impossible to trace individual data back to the user [65], which gives consumers a tangible

sense of security. However, the application of AI-based models for privacy preservation presents

a challenge in this regard. Unlike the straightforward concepts of noise addition or aggregation,

the inner workings of AI models are often more complex and less intuitive, making it difficult to

convey their security benefits to data subjects in a way that is both clear and reassuring. This

gap in communication has the potential to undermine the trust that is crucial for widespread

adoption of such advanced privacy-preserving techniques, and should not be trivialised.

This discussion applies broadly to the distribution of sensitive time series data, which varies

widely in content and sensitivity. In some cases, aggregation may suffice, particularly when

the utility of the data lies in the area under its curve, making the aggregation of multiple

profiles adequate. By adopting a "privacy-first" approach, our quantified privacy framework

and insights into the factors affecting aggregation’s privacy allow for more targeted solutions

where aggregation is one of many tools. For instance, when fidelity and granularity are less

critical than privacy, a larger aggregation size may be appropriate; conversely, when granularity

matters more than timescale, a longer input profile with a smaller aggregation size could be

chosen. The contributions of this thesis make such adaptations feasible while maintaining

comparable privacy standards. However, for smart meter data, aggregation has significant

drawbacks, and based on our literature review and results, promoting synthetic data is likely

a more robust solution in most applications.
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5.3.3 Evaluating AI-Generated Synthetic Smart Meter Data

Among potential replacements for the current aggregation model, synthetic data generation

stands out due to its enhanced utility, privacy, and adaptability. Unlike the rigid aggrega-

tion approach, synthetic models offer customisable solutions where users can query specific

information while maintaining privacy through statistical similarity to real data.

This flexibility is especially beneficial when dealing with outlier features that aggrega-

tion struggles to anonymise. For example, a tailored synthetic model can preserve essential

details while distorting them to meet predefined privacy thresholds. Microsoft’s generative

AI [66], which iteratively refines synthetic data to resemble private datasets while targeting

specific, sensitive features for distortion, illustrates this concept. Although such an approach

raises concerns about potential vulnerabilities like model inversion attacks, these can be man-

aged effectively, and even in their more diluted forms, synthetic models provide greater util-

ity than simple aggregation.

Beyond superior privacy and utility, AI-powered synthetic solutions represent a more re-

silient architecture to future threats. Identification attacks often rely on cross-referencing

distributed data with other datasets. The transparency of aggregation can make it vulnerable

as attackers have more information to narrow the scope of their cross-reference and reconstruct

input data, while the black-box nature of synthetic models offers a stronger defense by limiting

access to the models internal workings. This opacity makes synthetic models better equipped to

handle new security challenges and reduces the risk of data identification or reconstruction [67].

From a legislative perspective, synthetic data should not be exempt from scrutiny merely

because it does not contain real data. Instead, it could be recognised as an advanced form

of aggregation, subject to the same rigorous privacy standards. The investment in synthetic

systems, which are demonstrably more private and useful than traditional aggregation, is a

key takeaway of this dissertation. Rather than advocating for a specific model, this research

highlights the need for further development in this area, as shown by the superiority of even

simple synthetic models over current aggregation practices.
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5.3.4 Limitations and Future Directions

This study, while contributing valuable insights, has several limitations that suggest directions

for future research:

Dataset Limitations: The reliance on a dataset comprising 80 residential profiles, though

informative, may limit the generalisability of the findings across diverse geographic regions and

socio-economic contexts.

Model Sophistication: The generative AI model, while demonstrating potential over tradi-

tional aggregation methods, is a foundational implementation; more advanced models could

offer even greater improvements in privacy and utility.

Privacy Metrics: The study’s focus on identification probability as the primary metric,

though critical, does not fully address other important privacy concerns, such as robustness

against specific attack vectors.

Data Fidelity and Utility: The evaluation of data fidelity, while indicative of the model’s

effectiveness, does not fully capture the synthetic data’s utility in practical, context-specific

applications like forecasting or policy development.

AI Implementation Challenges: A key distinction between aggregation and AI-based

methods lies in their data requirements and infrastructure needs. Aggregation relies solely

on the profiles it aggregates, making it more adaptable in situations with limited data. In

contrast, AI models require extensive training datasets, which may not always be available, thus

limiting their applicability in certain contexts. Addressing the technical challenges of scaling

and implementing generative AI models in real-world applications to replace aggregation may

be complex and in some cases, infeasible given current data access and infrastructure.
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Building on these findings, future research should:

• Expand the dataset to include a more diverse range of profiles, enhancing the generalis-

ability and robustness of the conclusions.

• Develop and test more sophisticated generative models to provide deeper insights into the

potential of AI-driven approaches to handle complex data scenarios and maintain high

utility across various applications.

• Explore additional privacy metrics, such as resistance to different attack vectors, to offer

a more comprehensive assessment of the security of synthetic data models.

• Conduct longitudinal studies incorporating multiple years of data to improve understand-

ing of seasonal and long-term trends, critical for practical applications.

• Address the technical challenges of scaling and implementing generative AI models in

real-world settings, including infrastructure and expertise requirements.

• Examine potential biases in synthetic data generation to ensure fairness and applicability

across different populations, leading to more equitable and effective privacy-preserving

strategies.

A more thorough analysis of the uncertainty in our results is beyond the scope of this

dissertation, as the random forest classification method used here is demonstrated in literature

and this dissertation does not seek to quantify our analysis’ efficacy at predicting the success

of specific attack vectors, but to demonstrate a generic framework. The extensive database

used here is a diverse set of user data, but all contributors are volunteers to an academic

study, which may represent a biased sample of the British population. As this framework and

new privacy models are tested on data which is increasingly representative of the population,

results are likely to skew as the data changes.



6
Conclusion

This dissertation studies the dilemma between privacy and utility for smart meter data dis-

tribution in the UK, why the current privacy-preserving distribution model, aggregation, is

fraught, and how to build a demonstrably better system as foundation to the national UK

smart meter project. Current policies in the UK enforce that smart meter data, which is legally

considered personal data, be aggregated, or averaged, with other profiles before distribution to

data users to minimise the risk of customer identification. Legislation provides no threshold

for a safe risk of identification; rather, its standards are defined by the practice it enforces,

aggregation, which itself has no scientific basis nor does it make quantified privacy guarantees.

A palpable tension has formed where critics argue aggregate data is not high enough fidelity

and its enforcement is too rigid for the demands of data users, while simultaneously advocating

for more security. The persistence of this tension can be attributed to the unquantified nature

of current system, as we have no mechanisms or benchmarks with which the model could be

safely adapted or compared to another.

61



6. Conclusion 62

To examine the privacy of the current system and develop a vector through which com-

petitive systems may be compared, we develop a novel privacy assessment framework which

trains a random forest classifier to quantify information preserved from input to output, and

using Bayesian inference yields the probability of identifying the profiles used as input to some

published data representation. Current publishers of smart meter data and practitioners of

aggregation intuitively assume that small aggregation sizes lead to higher risk of re-identification

and that profiles with large, distinct features are more vulnerable within an aggregation, but

this is unsupported by concrete evidence. We use our assessment framework to quantify

the anonymity afforded by aggregation, on average, given a large set of real, metadata-rich

smart meter data provided by the Energy Demand Observatory and Laboratory (EDOL). We

study how the number of profiles aggregated, the length of the profiles being aggregated,

and the presence of input profiles with distinct outlier features impact the anonymity of

the input to an aggregation.

From a survey of literature and reports from analogous international data sharing schemes,

we find that aggregation, in most cases, is a dangerously vulnerable model and ill-equipped

to supply the insight demanded by data users whom the UK smart meter roll out is designed

to benefit, such as policymakers, researchers, and utilities. Training generative AI models

to synthesise artificial consumption data based on metadata prompts emerges as the most

promising replacement, so this dissertation develops such a model in Python and trains it on

the aforementioned EDOL consumption data. This model’s output representative load profiles

are assessed for their preservation of fidelity and for their anonymity using this dissertation’s

novel privacy assessment framework, and they are directly compared to representations of the

same data but anonymised with an aggregation.

Our tests yield two primary sets of results: quantitative metrics which demonstrate the rel-

ative efficacy of aggregation using a variety of parameters, and an objective, direct comparison

of the respective merits associated with synthetic data generation and aggregation. A negative

exponential relationship between risk of identification and aggregation size is discovered, as

well as a strong negative correlation between input profile length and risk of identification. It is
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also demonstrated that an input profile with a single outlier feature is more re-identifiable in an

aggregation, but as the number of outlier features increases, its identifiability decreases to the

point where beyond 4 outlier features both the injected outlier and all other input profiles are,

on average, less identifiable. When we compare our aggregation tests with the output of our

AI, we find that across all fidelity metrics the synthetic output more closely resembles its input

data, in almost every test injected outlier profiles are more identifiable within an aggregation

than the synthetic output, and overall, the input profiles to an aggregation are, on average,

more than 70% more identifiable than the training input to our synthetic model.

This dissertation provides a quantitative foundation for current smart meter data distri-

bution policies while exposing the shortcomings of the existing privacy-preservation model

compared to a basic generative AI approach. The generative model this dissertation develops

does not fully explore the potential of the architecture nor the peak performance of generative

AI, however, even in its basic form, synthetic generation, offering greater security, flexibility,

and utility, proves to be a stronger foundation for our energy system, delivering higher quality

and more anonymous results. As we grow our smart grid in the UK and rely more heavily

on the safe distribution of big data, this dissertation shows the significant potential of the

investment in AI-powered generative systems tailored to the unique needs of individual users,

and provides a novel framework with which future iterations may be compared objectively,

thereby quantifying the dilemma between utility and privacy on both sides.

This study is limited by data access and the scope of the tests conducted. The utility of

published smart meter data extends beyond its statistical similarity to real data and is context-

dependent, often better assessed by its performance in tasks like forecasting or preserving

specific features. The fidelity metrics used here, while indicative of our model’s quality com-

pared to aggregation, don’t capture the full picture. Additionally, generative models improve

with more training data and optimized parameters. Future work should focus on developing

targeted generative models, testing them with context-specific utility metrics, and using large,

representative datasets to ensure they anonymise data effectively while adhering to privacy

standards using our probability of identification framework.
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This dissertation underscores the critical need for a shift in the approach to smart meter

data privacy in the UK. The current reliance on aggregation, without a scientific foundation

or established privacy standards, has left the system vulnerable and stagnant. As our energy

infrastructure increasingly depends on big data, it is imperative to adopt robust privacy metrics

that balance utility and security. AI-powered generative models, as demonstrated in this

research, provide a superior alternative to traditional aggregation, offering higher data quality

and enhanced privacy protections. Embracing these models is not just an opportunity but

a necessity for safeguarding the future of the UKs smart grid and maintaining public trust.

Policymakers and practitioners must prioritize the development of stringent privacy standards

and utility-maximizing models that meet these standards, ensuring that the UK’s energy

infrastructure remains secure and resilient in the face of evolving challenges.
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